Cours: Ecritures littérales; identités remarquables

Extrait du programme de la classe de Troisième :

Contenu	COMPÉTENCES EXIGIBLES	COMMENTAIRES
Écritures littérales;	Factoriser des expressions	La reconnaissance de la forme d'une ex-
identités remar-	telles que :	pression algébrique faisant intervenir une
quables	(x+1)(x+2)-5(x+2);	identité remarquable peut représenter une
	$(2x+1)^2 + (2x+1)(x+3)$	difficulté qui doit être prise en compte. Les
	Connaître les égalités :	travaux s'articuleront sur deux axes :
	$(a+b)(a-b) = a^2 - b^2$; $(a+b)^2 = a^2 + 2ab + b^2$; $(a-b)^2 = a^2 - 2ab + b^2$. et les utiliser sur des expressions numériques ou littérales simples telles que: $101^2 = (100+1)^2 = 100^2 + 200 + 1$; $(x+5)^2 - 4 = (x+5)^2 - 2^2 = (x+5+2)(x+5-2)$	 utilisation d'expressions littérales pour des calculs numériques; utilisation du calcul littéral dans la mise en équation et la résolution de problèmes. Les activités viseront à assurer la maîtrise du développement d'expressions simples; en revanche, le travail sur la factorisation qui se poursuivra au lycée, ne vise à développer l'autonomie des élèves que dans des situations très simples. On consolidera les compétences en matière de calcul sur les puissances, notamment sur les puissances de 10.

1 Développer un produit

Définition: **Développer** un produit signifie le transformer en une **somme algébrique**

Rappel : une **somme algébrique** est une suite d'additions et de soustractions, impliquant des nombres et/ou des lettres

Nous avons, pour réaliser cela, plusieurs moyens à disposition :

1.1 Distributivité simple

Produit	\rightarrow	Somme algébrique
k(a+b)	→	ka + kb
k(a-b)	→	ka-kb

Applications et exemples :

- Calcul mental:

$$▶ 13 \times 99 = 13 \times (100 - 1) = 13 \times 100 - 13 \times 1 = 1300 - 13 = 1287$$

$$\triangleright 25 \times 104 = 25 \times (100 + 4) = 25 \times 100 + 25 \times 4 = 2500 + 100 = 2600$$

- Développement d'une expression littérale :

►
$$3(5a+7) = 3 \times 5a + 3 \times 7 = 15a+21$$

$$-2(5-4x) = -2 \times 5 - (-2) \times 4x = -10 + 8x$$

1.2 Distributivité double

Produit	\rightarrow	Somme algébrique
(a+b)(c+d)	→	ac + ad + bc + bd

Applications et exemples :

Développement d'une expression littérale :

$$(3-a)(4a+2) = 3 \times 4a + 3 \times 2 - a \times 4a - a \times 2 = 12a+6-4a^2-2a = -4a^2+10a+6$$

►
$$(3x-2)(1-4x) = 3x \times 1 + 3x \times (-4x) - 2 \times 1 - 2 \times (-4x) = 3x - 12x^2 - 2 + 8x = -12x^2 + 11x - 2$$

 $\underline{\wedge}$: **Pour ne pas se tromper dans les signes**, il est utile de se souvenir que, par exemple, 3x - 2 est la somme de 3x et de -2, et que 1 - 4x est la somme de 1 et de -4x. Ainsi, pour le calcul précédent, on a :

$$(3x-2)(1-4x) = (3x+(-2))(1+(-4x)) = (3x) \times 1 + (3x) \times (-4x) + (-2) \times 1 + (-2) \times (-4x) = \dots$$

1.3 Identités remarquables

Produit	\rightarrow	Somme algébrique
Carré d'une somme		
$(a+b)^2$	\rightarrow	$a^2 + 2ab + b^2$
Carré d'une différence		
$(a-b)^2$	\rightarrow	$a^2 - 2ab + b^2$
Produit d'une somme par une différence		
(a-b)(a-b)	+ <i>b</i>) →	$a^2 - b^2$

Applications et exemples :

- Calcul mental:

▶
$$101^2$$
 = $(100+1)^2$ = $100^2 + 2 \times 100 + 1^2$ = $10000 + 200 + 1$ = 10201
▶ 19^2 = $(20-1)^2$ = $20^2 - 2 \times 20 + 1^2$ = $400 - 40 + 1$ = 361
▶ 39×41 = $(40-1)(40+1)$ = $40^2 - 1^2$ = $1600 - 1$ = 1599

- Développement d'une expression littérale :

►
$$(y+7)^2$$
 = $y^2 + 2 \times y \times 7 + 7^2$ = $y^2 + 14y + 49$
► $(1-3x)^2$ = $1^2 - 2 \times 1 \times 3x + (3x)^2$ = $1-6x+9x^2$
► $(20-8x)(20+8x)$ = $20^2 - (8x)^2$ = $400-64x^2$

2 Factoriser une somme algébrique

Définition : Factoriser une somme algébrique signifie la transformer en produit

Développer

En fait, pour résumer :

Produit

Factoriser

Factoriser

2.1 Avec un facteur commun

On utilise la propriété de simple distributivité, mais "à l'envers" :

Somme algébrique	\rightarrow	Produit
$\underline{k}a + \underline{k}b$	\rightarrow	$\underline{k}(a+b)$
$\underline{k}a - \underline{k}b$	→	$\underline{k}(a-b)$

Dans les sommes algébriques de gauche, il y a deux termes, chacun étant un produit de deux facteurs. Comme k se retrouve dans les deux termes, on dit que c'est un **facteur commun** aux deux termes. On dit également que l'on a "**mis** k en **facteur**".

Applications et exemples :

- Calcul mental:
 - $\triangleright 13 \times 62 + 13 \times 38$ = $13 \times (62 + 38)$ = 13×100 = 1300
 - $\blacktriangleright 18.1 \times 34.8 8.1 \times 34.8 = (18.1 8.1) \times 34.8 = 10 \times 34.8 = 348$
- Factorisation d'une expression littérale grâce à un facteur commun :

 - $\blacktriangleright (x+7)(5-4x)-2(5-4x) = (5-4x)\times(x+7-2) = (5-4x)(x+5)$
 - $(x+3)^2 5(x+3) = (x+3) \times (x+3-5) = (x+3)(x-2)$

2.2 Avec les identités remarquables

Là aussi, on utilise les identités remarquables vues au paragraphe 1.3, mais "dans l'autre sens" :

Somme algébrique	→	Produit
$a^2 + 2ab + b^2$	\rightarrow	$(a+b)^2$
$a^2 - 2ab + b^2$	\rightarrow	$(a - b)^2$
a^2-b^2	\rightarrow	(a-b)(a+b)

Applications à la factorisation d'expressions littérales :

►
$$y^2 + 4y + 4 = y^2 + 2 \times y \times 2 + 2^2 = (y+2)^2$$

► $9x^2 - 6x + 1 = (3x)^2 - 2 \times 3x \times 1 + 1^2 = (3x-1)^2$

►
$$(x+5)^2 - 9$$
 = $(x+5)^2 - 3^2$ = $[(x+5)-3] \times [(x+5)+3]$
 = $(x+2) \times (x+8)$