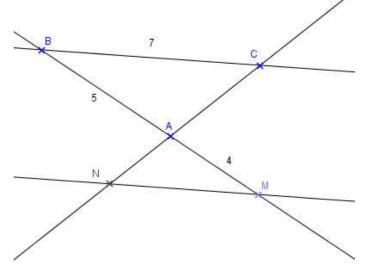
EXERCICE 1:

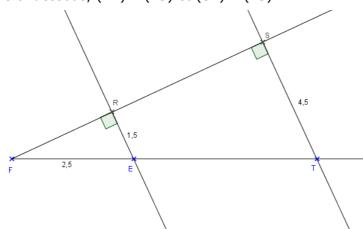
Sur la figure ci-dessous, $A \in (BM)$, $A \in (CN)$ et (BC) // (MN)

Calculer MN.



EXERCICE 2:

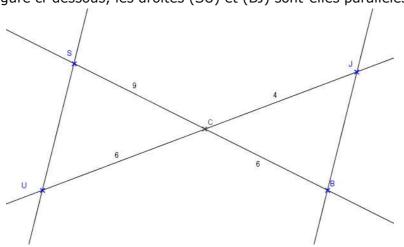
Sur la figure ci-dessous, (RE) \perp (FS) et (ST) \perp (FS)



- 1. Calculer FR.
- 2. Calculer FT puis FS.

EXERCICE 3:

Sur la figure ci-dessous, les droites (SU) et (BJ) sont-elles parallèles ?



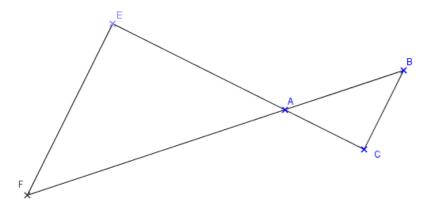
EXERCICE 4:

- 1. Construire un triangle DCV tel que : DV = 6,4 cm, DC = 3,6 cm et CV = 4 cm Placer les points A et O tels que : $D \in [VO]$, DO = 5,5 cm, $D \in [CA]$ et DA = 3,1 cm
- 2. Démontrer que les droites (CV) et (AO) ne sont pas parallèles.

EXERCICE 5:

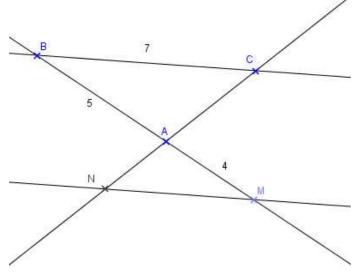
On considère la figure ci-dessous pour laquelle :

- Les points E, A et C sont alignés ;
- Les points F, A et B sont alignés ;
- AF = 12 cm, AC = 5 cm, AB = 7,5 cm et AE = 8 cm



- 1. Montrer que les droites (BC) et (EF) sont parallèles.
- 2. Calculer la longueur EF sachant que BC = 5,5 cm. Justifier la réponse.
- 3. Le triangle ABC est-il rectangle en C ? Justifier la réponse.

EXERCICE 1:



(BM) et (CN) sont sécantes en A (BC) // (MN)

Donc, d'après le théorème de Thalès, on a:

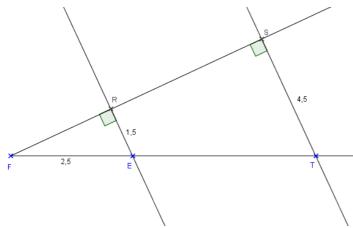
$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN}$$

$$\frac{5}{4} = \frac{AC}{AN} = \frac{7}{MN}$$

$$\frac{\text{Calcul de MN}}{\frac{5}{4} = \frac{7}{\text{MN}}}:$$

$$MN = \frac{4 \times 7}{5} = \frac{28}{5} = 5,6$$

EXERCICE 2:



1. Dans le triangle FRE, rectangle en R, on applique le théorème de Pythagore :

$$FE^2 = FR^2 + RE^2$$

$$2,5^2 = FR^2 + 1,5$$

$$6,25 = FR^2 + 2,25$$

$$6,25 = FR^2 + 2,25$$

 $FR^2 = 6,25 - 2,25 = 4$
 $FR = \sqrt{4} = 2$

$$FR = \sqrt{4} = 2$$

2. les droites (RE) et (ST) sont toutes les deux perpendiculaires à la même droite (FS), elles sont donc parallèles.

(RS) et (ET) sont sécantes en F

(RE) // (ST)

Donc, d'après le théorème de Thalès, on a :

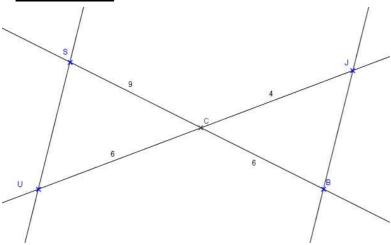
$$\frac{FR}{FS} = \frac{FE}{FT} = \frac{RE}{ST}$$

$$\frac{2}{FS} = \frac{2,5}{FT} = \frac{1,5}{4,5}$$

Calcul de FT:
$$\frac{2,5}{FT} = \frac{1,5}{4,5}$$
 donc $FT = \frac{2,5 \times 4,5}{1,5} = 7,5$

Calcul de FS:
$$\frac{2}{FS} = \frac{1.5}{4.5}$$
 donc $FS = \frac{2 \times 4.5}{1.5} = 6$

EXERCICE 3:



(SB) et (JU) sont sécantes en C

Les points S, C, B sont alignés dans le même ordre que les points U, C, J $\frac{CS}{CB} = \frac{9}{6} = 1,5$ $\frac{CU}{CJ} = \frac{6}{4} = 1,5$

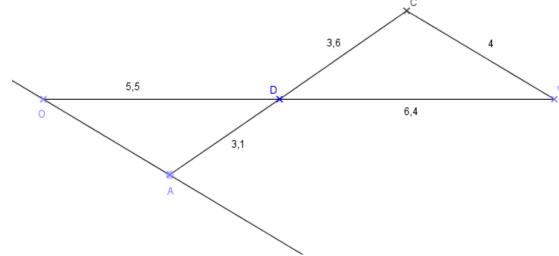
$$\frac{CS}{CB} = \frac{9}{6} = 1,5$$

$$\frac{CU}{C1} = \frac{6}{4} = 1,5$$

 $\frac{\text{CS}}{\text{CB}} = \frac{\text{CU}}{\text{CJ}}$ donc d'après la réciproque du théorème de Thalès, **les droites (SU) et (BJ)** sont parallèles.

EXERCICE 4:

1.



(VO) et (AC) sont sécantes en D

Les points O, D, V sont alignés dans le même ordre que les points A, D, C.

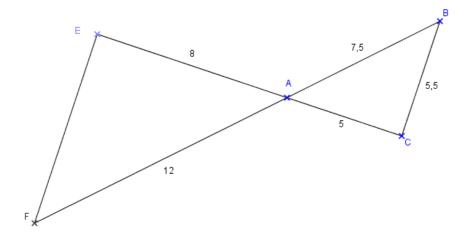
$$\frac{DO}{DV} = \frac{5,5}{6,4} = \frac{55}{64}$$

$$\frac{DA}{DC} = \frac{3.1}{3.6} = \frac{31}{36}$$

$$\frac{DO}{DV} \neq \frac{DA}{DC}$$

Si les droites (CV) et (AO) étaient parallèles, alors d'après le théorème de Thalès, on aurait : $\frac{DO}{DV} = \frac{DA}{DC}$. Ce n'est pas le cas, donc : **(CV) et (AO) ne sont pas parallèles.**

EXERCICE 5:



1. (EC) et (FB) sont sécantes en A Les points E, A, C sont alignés dans le même ordre que les points F, A, B

$$\frac{AE}{AC} = \frac{8}{5} = 1,6$$

$$\frac{AF}{AB} = \frac{12}{7.5} = \frac{120}{75} = \frac{15 \times 8}{15 \times 5} = \frac{8}{5} =$$
1,6

 $\frac{AE}{AC} = \frac{AF}{AB}$, donc d'après la réciproque du théorème de Thalès, les droites (BC) et (EF) sont parallèles.

2. (EC) et (FB) sont sécantes en A (BC) // (EF)

Donc, d'après le théorème de Thalès, on a :

$$\frac{AE}{AC} = \frac{AF}{AB} = \frac{EF}{BC}$$

$$\frac{8}{5} = \frac{12}{7,5} = \frac{EF}{5,5}$$

Calcul de EF :
$$\frac{8}{5} = \frac{EF}{5.5}$$
 donc EF = $\frac{8 \times 5.5}{5} = 8.8$ cm

donc EF =
$$\frac{8 \times 5,5}{5}$$
 = **8,8 cm**

3. Dans le triangle ABC,

$$AB^2 = 7,5^2 =$$
56,25 $BC^2 + AC^2 = 5,5^2 + 5^2 = 30,25 + 25 =$ **55,25**

 $AB^2 \neq BC^2 + AC^2$

Si ABC était un triangle rectangle, alors d'après le théorème de Pythagore, on aurait : $AB^2 = BC^2 + AC^2$.

Ce n'est pas le cas, donc ABC n'est pas un triangle rectangle.